Neue Tendenzen im Mobilfunk: Entwicklung von Smart Modems

Gerhard Fettweis, Nadja Lohse, Dietrich Hunold, Jens Jelitto und Marcus Bronzel, Lehrstuhl Mobile Nachrichtensysteme, Technische Universität Dresden

In den letzten Jahren hat sich im Mobilfunk aufgrund der Einführung neuer Detektionsverfahren eine rasant Entwicklung vollzogen. Allerdings wurden bislang die Komponenten eines Modems weitgesteckt, getrennt voneinander behandelt. In neuester Zeit sind weitere Komponenten, wie beispielsweise intelligente Antennen, hinzugekommen, die die Empfängerkomplexität weiter erhöhen. Mit diesen Antennen können Signale räumlich getrennt und außerdem höhere Datenraten übertragen werden. Im vorliegenden Artikel soll gezeigt werden, daß dadurch der Modentwurf wirklich neu und gänzlich überdacht werden muß, was zur Entwicklung von „Smart Modems“ führt.

New Trends in Mobile Communications: Design of Smart Modems

In recent years, the field of mobile communications has been vastly growing due to the introduction of new detection techniques. However, the components of a modem were to a large extent treated separately so far. Further components as e.g., smart antennas were introduced recently. This additionally enhances the receiver complexity. Smart antennas can separate signals in space and transmit at higher data rates as well. It is the intention of this paper to show that the modern design process has to be reviewed in a really new and comprehensive way resulting in the development of smart modems.

1 Motivation

Immer wieder hat die Einführung neuer Komponenten im Bereich des Modentwurfs der Entwicklung im Mobilfunk neue Impulse verliehen. So bedeuete die Einführung des Maximum-Likelihood-Se-

Um mit diesen Effekten fertig zu werden, brauchte man neue Empfän- gerarchitekturen. Ausgangspunkt für die Entwicklung neuer Detektionstechniken ist immer eine Be- trachtung der Kanalverhältnisse, die modellhaft abstrahiert werden müssen. Man kann den Mehrwegekanal durch eine Transversalfilterstruktur nachbilden, wie Bild 1 zu entnehmen ist.

Dabei ist W die Bandbreite des zu übertragenden Signals. Insofern liegt die zeitliche Auflösung des Kanals bei 1/W, was der Laufzeit der Ver- zögerungsglieder des Filters entspricht. Das bedeutet, daß Mehrwegkomponenten, die eine gegen- seitige Zeitverschiebung von weniger als 1/W aufweisen, sich im Empfänger nicht mehr trennen lassen, sondern durch phasenrichtige Über- lagerung zu einem Signalschwind führen können. Die zeitliche Sprei- zung des Signals kann man leicht im Kanalmodell nachweisen: Sie entspricht der maximalen Verzögerung des Filters, die gleich der Sum- me der Einzelverzögerungen ist. Diese Größe nennt man Mehrwege- spreizung (multipath spread). Deren Kehrwert, die Kohärenzband- breite, ist ebenfalls eine wichtige Kenngröße des Kanals und gibt diejenige Bandbreite an, innerhalb der die Kanalübertragungseigenscha- ten annähernd konstant sind [1].

Nun kann man zwei Fälle unterscheiden, die von den jeweiligen Kanalbedingungen abhängen. Im ersten Fall ist die Mehrwegesprei- zung größer als der Kehrwert der Signallbandbreite; die Kohärenzbandbreite ist also kleiner als die Signalbandbreite. Der Kanal ist deshalb frequenzselektiv. Das bedeutet, daß mehrere aufeinanderfolgende Symbo- le sich teilweise überlagern – man sagt, es tritt Inter-symbol-Interferenz (ISI) auf.

Im anderen Fall ist die Mehrwegespreizung kleiner als der Kehrwert der Signalbandbreite. Dadurch tritt zwar einerseits keine ISI mehr auf, andererseits schrumpft das Ka- nalmodell jedoch auf einen einzigen Zweig zusammen. Der Kanal ist also nicht mehr frequenzselektiv. Es ist aber durchaus von Vorteil, wenn das Kanalmodell mehrere Zweige hat. Die Wahrscheinlich-keit, daß alle Zweige stark gestört sind, wird mit zunehmender Anzahl der Zweige immer geringer, wodurch sich der Empfang also verbessert. Falls mehr Bandbreite vorhanden ist, als für die Signalübertragung grundsätzlich nötig wäre, kann das Signal z.B. durch Anwen- dung von DS-SS (Direct Sequence Spread Spectrum) oder Multi-Carri- er SS künstlich gespreizt werden [4]. Durch Erhöhung der Gesamt-}

3 Einbeziehung intelligenten Antennen

4 Empfängeraufbau mit intelligenten Antennen

Die Frage lautet nun, welche Konsequenzen sich für den Modementwurf unter Einbeziehung intelligenter Antennen ergeben. Ähnlich wie bei den bereits vorgestellten Entzerrer-/Rake-Empfängern hat der für intelligente Antennen geeignete Empfänger einen analogen Aufbau wie das dazugehörige Kanalmodell. Um die an der Antenne einfallenden Signale sinnvoll verarbeiten zu können, müssen gewisse Bedingungen erfüllt werden. Zunächst gilt natürlich auch hier, daß die kleinste Zeitauflösung (Verzögerung $1/W$ eines Verzögerungsglieds im Filter) dem Reziproken der Signalbandbreite entspricht.

Darüber hinaus müssen aber auch an die Signalbandbreite W selbst Forderungen gestellt werden. So sollten durch die Phasenverschiebungen zwischen den einzelnen Antennenelementen keine nennenswerten Verzögerungen entstehen, so daß zu einem bestimmten Ausbreitungs- pfad gehörende Signalanteile in allen Filterstücken im selben Zweig liegen. Zur Herleitung soll folgende Argumentation geführt werden: Offensichtlich ergibt sich die maximale Signalverzögerung zwischen zwei Antennenelementen bei einem Einfallsinkel von 90° zur Antennenormalen. Aus den geometrischen Gegebenheiten läßt sich leicht ableiten, daß diese Verzögerung gleich dem Verhältnis von Abstand d zweier Antennenelemente zur Lichtrreichweite c ist. Diese Größe soll nun deutlich kleiner als der Kehrwert der Signalbandbreite sein, damit die oben genannte Bedingung gewährleistet ist. Unter Zuhilfenahme des räumlichen Abtasttheorems ($d < \lambda/2$) kann dieser Zusammenhang folgendermaßen ausgedrückt werden:

$$
\tau_{\text{max}, \phi=90^\circ} = \frac{(M-1)d}{c} \\
\approx \frac{(M-1)\lambda}{2c} < \frac{1}{W}. \quad (1)
$$

Da das Verhältnis von Lichtgeschwindigkeit und Wellenlänge gleich der Trägerfrequenz f_c ist, kann die Bedingung für die Signalbandbreite endgültig so aufgeschrieben werden:

$$
W < \frac{2f_c}{M-1}. \quad (2)
$$

Bislang wurden die Richtungs- schätzung mittels intelligenter Antennen (räumliche Dimension) und die Schätzung der Kanalimpulseantwort (zeitliche Dimension) getrennt voneinander betrachtet. Hier hat sich nun gezeigt, daß sinnvollerweise beide Filter zu einem einzigen vereint werden, das die Kanalschätzung in zeitlicher und in räumlicher Dimension durchführt. Daraus wird deutlich, daß die Integra-
tion von intelligenten Antennen in Mobilfunkempfängern nicht bei der reinen Zusammenschaltung stehenbleiben darf, sondern auch im Modementwurf vorgesehen werden muß.

5 Systemverbesserung durch intelligente Antennen

Beim Einsatz intelligenter Antennen wird eine Qualitäts- und Quantitätsssteigerung im Mobilfunksystem durch verschiedene Aspekte erreicht. Bisher wurden drei solcher Aspekte klassifiziert und der daraus resultierende Gewinn diskutiert:

- Antennenleistungsgewinn,
- „Spatial Filtering for Interference Reduction“ (SFI R) und
- „Space Division Multiple Access“ (SDMA).

Im ersten Fall wird der erhöhte Antennenleistungsgewinn betrachtet, der sich durch die Fokussierung der Abstrahl-/Empfangscharakteristik zu einer Antennenecke gegenüber einer omnidirektionalen Antenne ergibt. Durch diesen Gewinn läßt sich z.B. die Reichweite einer Basisstation erhöhen oder die Sendeleistung um einen adäquaten Betrag verringern. Bei letzterem werden außerdem die durch Antennen erzeugten Interferenzen reduziert.

Bei SFI R (räumliche Filterung zur Verringerung von Störungen) wird die intelligente Antenne als räumliches Filter betrachtet: Deren Antennendiagramme können so gestaltet werden, daß Störsignale möglichst unterdrückt und die Signalenergie des gewünschten Signals maximiert werden. Da nun die Störanteile im Empfangssignal reduziert werden können, sind insgesamt mehr Interferenzen zulässig, was in einer Erhöhung der Kapazität des Gesamtsystems resultiert.

Bei SDMA, dem raumgeteilten Vielfachzugriff, wird die mit intelligenten Antennen mögliche räumliche Kanaltrennung (und damit Teilnehmertrennung) genutzt. Diese Trennung wird durch gleichzeitige Ausrichtung mehrerer Antennenkeulen in verschiedene Richtungen erreicht. Dadurch können mehrere Nutzer, welche ansonsten den gleichen Kanal (Zeit, Raum, Code) benutzen, gleichzeitig bedient werden, was sich direkt in einer Erhöhung der Teilnehmeranzahl widerspiegelt.

Nun soll eine weitere nutzbare Eigenschaft der intelligenten Antennen hinzukommen,

- „Spatial Filtering for Channel Improvement“ (SFCI),

welche die Kanalverbesserungen betrachtet, die aufgrund der räumlichen Filterung von Mehrwegen entstehen. Die Verbesserung des Kanals läßt durch die damit verbundene Verringerung der ISI höhere Bitraten bzw. hochwertige Modulationsverfahren zu, was sehr wichtig für zukünftige Mobilfunksysteme sein wird [8]. Es wurden Untersuchungen angestellt, wie die zeitliche Spreizung eines Signals durch die Breite der intelligenten Antenne beeinflußt wird.

6 Was ist ein „Smart Modem“?

Aber nicht nur bei den Antennen selbst ergeben sich Neuerungen: auch der gesamte Modemwurf wird dadurch beeinflusst. Die Zukunft besteht deshalb nicht nur aus einer der Detektion vorgeschalteten intelligenten Antenne, sondern aus „Smart Modems“, die eine kombinierte Adaption der Antennen („Smart Antenna“), Modulation, Codierung und Detektion/Synchronisation erlauben.

Das wichtigste Merkmal eines Mobilfunksystems ist selbstverständlich die Mobilität, was aber eine ständige Veränderung der Kanaleigenschaften mit sich bringt. Diese Tatsache bedeutet große Schwierigkeiten bei der Implementierung der obengenannten Techniken. Insbesondere die Algorithmen zum Ausrichten der intelligenten Antennen benötigen eine sehr aufwendige Datenverarbeitung, und dieser Aufwand kann bei einer gemeinsamen Betrachtung der Antennen-, Entzerrungs- und Codier-Verfahren gewaltig steigen. Diese Schwierigkeiten sind bei gewissen Bedingungen überwindbar, z.B. bei schnellen Teilnehmern, aber das sollte nicht zu einer Dienstverweigerung führen.

Um alle diese Anforderungen zu bewältigen, sind intelligente Modems gefragt, die sich sowohl den Kanalbedingungen als auch den Dienstanforderungen anpassen, und gleichzeitig eine gemeinsame Betrachtung der verschiedenen Modemkomponenten (Antennen, Entzerrer, Codierer, u.a.) erzielen.

7 Fazit

In diesem Artikel wurden einige der wichtigsten Herausforderungen an die Modemwicklung für die nächste Generation von Mobilfunksystemen dargestellt. Die Mehrdimensionalität und Komplexität die-

Somit stehen wir erstmaligerweise gerade erst mal wieder „am Anfang“ der Forschung auf dem Gebiet des Physical Layers, dem Entwurf von Smart Modems!

Literatur

Prof. Dr.-Ing. Gerhard Fettweis
Dr.-Ing. Nadja Losse
Dr.-Ing. Dietrich Humold
Dr.-Ing. Jens Jellitto
Dr. rer. nat. Marcus Bronzel
Technische Universität Dresden,
Bundesallee 10, 01062 Dresden,
Email: fettweis@informatik.tu-dresden.de