Fundamentals of Estimation and Detection

- Lectures: Michael Lentmaier (Wed., 6th DS, BAR 106)
- Exercises: Vinay Suryaprakash (Thu., 6th DS, BAR 218)
- Exam: oral, date to be fixed in February/March

Additional literature:
- James L. Massey: lecture notes (german), ETH Zürich
 - “Mathematische Grundlagen der Nachrichtentechnik”
 - “Zeitdiskrete Systeme und stochastische Signale”

(available at http://www.isiweb.ee.ethz.ch/archive/massey_scr/)
Content of the lectures

- **Introduction**
 - Motivation
 - Mathematical preliminaries: probability theory

- **Detection Theory**
 - Introduction / Structure of detection problems
 - Detection methods: starting with a single measurement
 - Maximum likelihood (ML) rule
 - Neyman-Pearson Theorem/ Receiver Operating Characteristic
 - Maximum a posteriori probability (MAP) rule
 - General Bayesian problem / (Log) Likelihood Ratio
 - Min-Max criterion
 - Application to M hypotheses
 - Detection in systems with memory
 - FIR-systemes / hidden state Markov chains
 - Tree-based search algorithms
 - Maximum Likelihood Sequence Estimation (Viterbi algorithm)
 - Symbol-by-symbol MAP (BCJR algorithm, logMAP, maxLogMAP)
 - Iterative detection methods
 - The “turbo-principle"
 - Application examples: turbo codes, iterative equalization
Content of the lectures

- **Estimation Theory**
 - Introduction: motivation, properties of estimators
 - Bayesian estimation of parameters
 - Bayesian MMSE estimation
 - General Bayesian estimation problem
 - Maximum a posteriori probability (MAP) rule
 - Maximum likelihood (ML) rule
 - Design of unbiased estimators of minimum variance
 - Fisher information
 - Cramer-Rao bound, efficiency
 - Rao-Blackwell theorem, Neyman-Fisher factorization
 - Estimation of vector parameters
 - MAP, ML and MMSE for the vector case
 - Linear models: BLUE, Linear-Least-Squares, linear MMSE
 - Filtering of stochastic signals
 - Introduction to linear time-discrete systems
 - Wiener filtering
 - Basic principles of Kalman filtering