Lecture "‘HW-SW Codesign’"

Solutions to Exercise (1)

1. (a) hint: include in your cut-set always all inputs (or outputs). This ensures that all output experience the same latency
 ⇒ total latency is 6

(b) latency is 2, but c.p. is longer
2. 4-bit carry-ripple adder

(a) signal flow graph for 4-bit adder

(b) The number of pipeline register is 21. For arbitrary bit-width N we can write

$$n_p = \sum_{i=0}^{N-2} 2N - i = \frac{3N^2 - N - 2}{2} \quad (1)$$

(c) Adder row:
The skewing triangle is only necessary at the beginning and at the end, total latency is increased by one clock cycle per adder stage only

\Rightarrow total latency and number of pipe-_registers reduced
3. Compare-Select circuit: Bit-level representation

(a) Subtraction and than selection according to sign bit

⇒ Loop at bit-level - c.p. can’t be shortened

(b) Bit-level comparison from MSB down to LSB

⇒ Cut-set similar to integrator - c.p. independent of width